Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling.
نویسندگان
چکیده
Cortical sensory maps can reorganize in the adult brain in an experience-dependent manner. We monitored somatosensory cortical reorganization after sensory deafferentation using functional magnetic resonance imaging (fMRI) in rats subjected to complete transection of the mid-thoracic spinal cord. Cortical representation in response to spared forelimb stimulation was observed to enlarge and invade adjacent sensory-deprived hind limb territory in the primary somatosensory cortex as early as 3 days after injury. Functional MRI also demonstrated long-term cortical plasticity accompanied by increased thalamic activation. To support the notion that alterations of cortical neuronal circuitry after spinal cord injury may underlie the fMRI changes, we quantified transcriptional activities of several genes related to cortical plasticity including the Nogo receptor (NgR), its co-receptor LINGO-1 and brain derived neurotrophic factor (BDNF), using in situ hybridization. We demonstrate that NgR and LINGO-1 are down-regulated specifically in cortical areas deprived of sensory input and in adjacent cortex from 1 day after injury, while BDNF is up-regulated. Our results demonstrate that cortical neurons react to sensory deprivation by decreasing transcriptional activities of genes encoding the Nogo receptor components in the sensory deprived and the anatomically adjacent non-deprived area. Combined with the BDNF up-regulation, these changes presumably allow structural changes in the neuropil. Our observations therefore suggest an involvement of Nogo signalling in cortical activity-dependent plasticity in the somatosensory system. In spinal cord injury, cortical reorganization as shown here can become a disadvantage, much like the situation in amblyopia or phantom sensation. Successful strategies to repair sensory pathways at the spinal cord level may not lead to proper reestablishment of cortical connections, once deprived hind limb cortical areas have been reallocated to forelimb use. In such situations, methods to control cortical plasticity, possibly by targeting Nogo signalling, may become helpful.
منابع مشابه
Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats.
Spinal cord trauma leads to loss of motor, sensory and autonomic functions below the lesion. Recovery is very restricted, due in part to neurite growth inhibitory myelin proteins, in particular Nogo-A. Two neutralizing antibodies against Nogo-A were used to study recovery and axonal regeneration after spinal cord lesions. Three months old Lewis rats were tested in sensory-motor tasks (open fiel...
متن کاملEvaluation of Sensory Pathways in Spinal Cord by Comparison of fMRI Methodologies
Introduction: Today, clinicians and neuroscientists need to have a comprehensive survey of neurological pathologies and injuries. For the First-time, SEEP contrast and Spin-Echo pulse sequences was used for functional imaging of the Lumbar spinal cord. This method used by several research groups for Spinal cord mapping, but other researchers tried to improve BOLD fMRI to Spina...
متن کاملFunctional Recovery and Functional Magnetic Resonance Imaging changes Following Cellular Therapy in a Case of Chronic Complete Spinal Cord Injury
Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique to monitor brain activity that provides detailed maps of the brain areas. A number of task-induced fMRI studies have demonstrated rearrangement of cortical activation patterns in the secondary brain areas in SCI patients. Chronic spinal cord injury (SCI) is a devastating disorder afflicting millions across the world. Cellu...
متن کاملNogo-A antibodies and training reduce muscle spasms in spinal cord-injured rats.
OBJECTIVE Spinal cord injury (SCI) leads to permanent motor and sensory deficits due to the damage of ascending and descending fiber tracts. In addition, malfunctions such as neuropathic pain or muscle spasms develop in many patients, possibly caused by injury-induced plastic changes of neuronal circuits above and below the lesion. New treatment strategies for spinal cord injury aim at enhancin...
متن کاملCervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses
The adult central nervous system (CNS) of higher vertebrates displays a limited ability for self repair after traumatic injuries, leading to lasting functional deficits [1]. Small injuries can result in transient impairments, but the mechanisms of recovery are poorly understood [2]. At the cortical level, rearrangements of the sensory and motor representation maps often parallel recovery [3,4]....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain : a journal of neurology
دوره 130 Pt 11 شماره
صفحات -
تاریخ انتشار 2007